百家乐-百家乐官网平台导航_百家乐代理_全讯网新 (中国)·官方网站

Challenge conventions.

A continuous quest for a better world.

Happenings at WZU

Researcher ZHANG Lijie from the College of Chemistry and Materials Engineering Publishes Academic Paper in "Nature Nanotechnology", Sub-journal of Nature

Release time: 2023-10-17

Two-dimensional materials possess novel physical properties such as atomic-level thickness, excellent electronic transport, and optoelectronic characteristics. They serve as ideal platforms for the development of high-performance electronic and optoelectronic devices, potentially extending the traditional silicon-based semiconductor industry based on "Moore's Law" and further enhancing chip transistor integration density. However, the process temperatures required for producing high-quality two-dimensional materials are generally higher than the temperature limits of standard semiconductor CMOS (complementary metal-oxide-semiconductor) chip fabrication processes, significantly restricting the integration of two-dimensional materials with silicon-based integrated circuits. Although integration of two-dimensional materials can be achieved through additional mechanical transfer processes, the samples produced using mechanical transfer methods are challenging to control in terms of product morphology and size, are time-consuming and inefficient, and often introduce chemical impurities at material interfaces, leading to a noticeable decline in material performance and hindering scalable applications. Therefore, achieving low-temperature direct growth of high-quality two-dimensional materials is an ideal solution to promote their practical applications in the semiconductor field.

Recently, researcher ZHANG Lijie and colleagues from our institute addressed the temperature constraints faced in the integration of two-dimensional materials, heterostructures, and semiconductor chip monolithic integration. They first developed a van der Waals substrate-assisted low-temperature epitaxial growth strategy for the controllable growth of a series of two-dimensional metal iodides (PbI2, CdI2, BiI3, CuI) at relatively low temperatures. Combined with theoretical calculations, they elucidated the impact of diffusion barriers on the growth of two-dimensional iodides, providing strategies and theoretical guidance for low-temperature growth of high-quality two-dimensional materials. This research achievement was published in the prestigious international academic journal "Advanced Functional Materials" in the field of materials.

Building upon this foundation, Researcher ZHANG Lijie and team designed a universal van der Waals substrate-assisted low-temperature in-situ substitution growth method for two-dimensional metal iodides. They successfully achieved ultra-low-temperature controllable growth (≤ 400°C) of 17 high-quality two-dimensional metal chalcogenides and their heterostructures. Combining theoretical calculations, they elucidated the mechanism of ultra-low-temperature in-situ substitution growth, revealing the microscopic essence of sulfur element replacing iodine element with low substitution barriers. Moreover, they achieved large-area array integration of various two-dimensional materials and their heterostructures at temperatures below 400°C. This research offers a feasible solution for the temperature compatibility issue in the backend manufacturing process of two-dimensional materials and semiconductor chips and provides a new approach for the monolithic integration of two-dimensional materials and their heterostructures. The research paper titled "Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides" was published in  Nature Nanotechnology sub-journal of Nature, with Wenzhou University as the joint corresponding unit. Researcher Zhang Lijie from  College of Chemistry and Materials Engineering, Lain-Jong LI from the University of Hong Kong, Zhengtang LUO from the Hong Kong University of Science and Technology, and Shaoming HUANG from Guangdong University of Technology are the joint corresponding authors. Young faculty member ZHAO Mei from College of Chemistry and Materials Engineering is the joint first author.



2024-03-04

WZU Education Majors Achieve Sixth Place Nationwide in the 9th "Tian Jiabing Cup" National Teaching Skills Competition From December 29th to 31st, the finals of the 9th "Tian Jiabing Cup" National Teaching Skills Competition for education majors were held at Zhejiang Normal University. A total of 1611 participants from 226 universities nationwide competed in this event, with 10 participants from our university. They achieved 4 first prizes, 1 second prize, and 5 third prizes, ranking sixth in the nation for the number ...

2023-10-17

Researcher ZHANG Lijie from the College of Chemistry and Materials Engineering Publishes Academic Paper in "Nature Nanotechnology", Sub-journal of Nature Two-dimensional materials possess novel physical properties such as atomic-level thickness, excellent electronic transport, and optoelectronic characteristics. They serve as ideal platforms for the development of high-performance electronic and optoelectronic devices, potentially extending the traditional silicon-based semiconductor industry based on "Moore's Law" and further enhancing chip tra...

Contact Us

International Relations Office, Wenzhou University

Postal Address: 6th Floor, Administrative Building, South Campus, Wenzhou University, Chashan University Town, Wenzhou City, Zhejiang Province, China 325035

Tel: 0086-577-86680971 86598029

Fax: 0086-577-86598029

E-mail: fao@wzu.edu.cn

Stay Connected

永年县| 足球投注网址| 百家乐游戏排行榜| 易发娱乐场| 做生意门面对着什么方向好| 木棉百家乐的玩法技巧和规则| 百家乐官网稳赢赌法| 木棉百家乐网络| 百家乐官网机器图片| 新时代娱乐城开户| 百家乐是骗人吗| 顶级赌场官方直营| 百家乐论坛百科| 网上百家乐官网信誉度| 二八杠手法| 大发888的任务怎么做| 洱源县| 菲律宾百家乐官网赌场娱乐网规则| 大发888代理佣金| 澳门博彩公司| 现场百家乐电话投注| 玩百家乐官网输澳门百家乐官网现场| 网上百家乐赌| 属虎与属鼠做生意好吗| 百家乐官网真人娱乐注册| 百家乐咋样赢钱| 百家乐网站加盟| 百家乐官网网上赌博网| 澳门博彩8345cc| 百家乐押注方法| 百家乐官网缩水| 百家乐官网的桌子| 大发888官方 3000| 百家乐赌博策略| 属猪与属狗 做生意| 联众博彩| 金满堂百家乐的玩法技巧和规则| 澳门百家乐走势图怎么看| 澳门百家乐官网公试打法| 新葡京娱乐城官网| 大发888娱乐城注册lm0|