百家乐-百家乐官网平台导航_百家乐代理_全讯网新 (中国)·官方网站

Newsroom

Social Footprint

Congratulations to Associate Professor Yue Hu and Her Team for Their Cover Article Published in Advanced Optical Materials

Release time: 2021-12-02

Recently the research paper by Associate Professor Yue Hu and her team “Size-Tunable Gold Aerogels: A Durable and Misfocus-Tolerant 3D Substrate for Multiplex SERS Detection” has been published as the cover paper in the famous optical journal Advanced Optical Materials.

SERS, due to its high sensitivity (can reach single molecule detection level), has been under spotlight and is regarded as one of the most promising analytical methods. However, the hotspot of traditional 2D SERS substrate is limited to X-Y plane only, which results in limited signal strength and poor focusing tolerance. Therefore developing a 3D SERS substrate becomes a new and essential focus of research direction. Although certain achievements have been made in the study of 3D SERS substrate, the feature size of the z direction of the solid 3D substrate in existing papers is less than 10μm, which is not ideal. However, Noble metal aerogels (NMAs), due to its multi-pore, large specific surface area, and self-supporting features, is highly likely to become a high-performance 3D SERS substrate to overcome the defects of traditional 2D SERS substrate. However it’s extremely difficult to control the sizes (e.g. the diameter of nanowire), which also restricts the study of structure-activity relationship and performance optimization.

In the preliminary work conducted by an international team led by Associate Professor Yue Hu of Wenzhou University, Professor Ran Du of Beijing Institute of Technology and Professor Alexander Eychmüller of Technische Universitat Dresden, through in-depth study of the metal aerogels synthesis methodology, a range of easy-to-control preparation methods were developed, which achieved effective control of the rapid preparation of metal aerogels and a wide range of feature size, specific surface area, and pore volume (Sci. Adv.2019, Nat. Commun.2020, Matter2020). On that basis, the same team worked together again. Take the gold aerogels with network feature size of 5-100 nm as an example, they researched on the feature size of aerogels substrate and the SERS activity dependence from theoretical and experimental perspectives. Through optimizing some parameters, they not only came up with durable and misfocus-tolerant SERS substrate (>300 μm), but also achieved high-sensitivity and multi-channel detection of dyes, pesticides and carcinogens.

Some of their research findings have been published in Advanced Optical Materials (DOI: 10.1002/adom.202100352) and have been chosen as the front cover article with Wenzhou University listed as first institute, Lin Zhou, a chemistry postgraduate student enrolled in 2016 as the first author of this article, and Associate Professor Yue Hu from the School of Chemical and Material Engineering of Wenzhou University as corresponding author.


The researchers first of all prepared a range of gold aerogels with the feature size (nanowire diameter) of 5-100 nm. Research shows that SERRS enhancement factor (EF) can be affected by the feature size and excitation wavelength of gold aerogels. Under the same excitation wavelength, the enhancement factor has an optimal feature size. However along with the red shift of the excitation wavelength the corresponding optimal feature size also increases, which is also observed in many probe molecules. By adopting the finite difference time domain theory (FDTD) simulation and using gold nanorods or tetrapods as models, it can be clearly observed that with the increase of diameter, the absorption wavelength also gradually moves towards the long wave. From that we can infer that the resonant excitation wavelength of gold aerogels is positively correlated with the feature size, which can to some extent explain the mechanism of the dependence between SERS activity and the feature size of the excitation wavelength.

Compared to typical 2D SERS substrate (8 nm gold film), gold aerogels display higher enhancement factor (up to 8.9×109) against dyes, pesticides and carcinogens, which is higher than most of the 3D SERS substrates reported so far (105-107). In addition, gold aerogels are not only reusable but also extremely stable (>1 month) and has superior multi-channel detectability, which indicates that it has outstanding practical applications. Finally, gold aerogels also are misfocus-tolerant (along z direction>300 μm). It means even when it’s used in multi-channel detection, the value can still reach 150 μm, which is higher than the existing solid 3D SERS substrates.

This research systemically studied the structure-activity relationship and property features of NMAs as 3D SERS substrates, obtained genuine 3D SERS substrate, laid a solid foundation for the design of aerogel-based 3D SERS substrate, and pointed out a new direction for achieving durable misfocus-tolerance, high-stability, high-sensitivity, and multi-channel SERS detection.

2024-03-04

WZU Education Majors Achieve Sixth Place Nationwide in the 9th "Tian Jiabing Cup" National Teaching Skills Competition From December 29th to 31st, the finals of the 9th "Tian Jiabing Cup" National Teaching Skills Competition for education majors were held at Zhejiang Normal University. A total of 1611 participants from 226 universities nationwide competed in this event, with 10 participants from our university. They achieved 4 first prizes, 1 second prize, and 5 third prizes, ranking sixth in the nation for the number ...

2023-10-17

Researcher ZHANG Lijie from the College of Chemistry and Materials Engineering Publishes Academic Paper in "Nature Nanotechnology", Sub-journal of Nature Two-dimensional materials possess novel physical properties such as atomic-level thickness, excellent electronic transport, and optoelectronic characteristics. They serve as ideal platforms for the development of high-performance electronic and optoelectronic devices, potentially extending the traditional silicon-based semiconductor industry based on "Moore's Law" and further enhancing chip tra...

Contact Us

International Relations Office, Wenzhou University

Postal Address: 6th Floor, Administrative Building, South Campus, Wenzhou University, Chashan University Town, Wenzhou City, Zhejiang Province, China 325035

Tel: 0086-577-86680971 86598029

Fax: 0086-577-86598029

E-mail: fao@wzu.edu.cn

Stay Connected

澳门百家乐官方网址| 长沙市| 广发百家乐的玩法技巧和规则 | 大发888娱乐城健账号| 优博| 百家乐官网庄闲桌子 | 金牌百家乐官网的玩法技巧和规则 | 百家乐注册| 娱乐城去澳门| 百家乐官网庄闲的几率| 明陞百家乐娱乐城| k7娱乐城开户| 木棉百家乐的玩法技巧和规则| 彩会百家乐官网游戏| 澳门百家乐娱乐注册| 澳门赌百家乐官网打法| 百家乐3式打法微笑心法| 任我赢百家乐官网自动投注系统| 澳门百家乐有限公司| 曲阳县| 破解百家乐游戏机| 娱乐百家乐官网的玩法技巧和规则 | 百家乐破解的办法| 蓝盾百家乐官网赌场娱乐网规则| 大发888赌场娱乐网规则| 澳门百家乐官网然后赢| 皇冠备用网址| 大发888促销代码| 破战百家乐的玩法技巧和规则 | 新濠百家乐官网的玩法技巧和规则| 四房播播| 大发888代理充值| 澳门百家乐论| 金满堂百家乐的玩法技巧和规则| 澳门百家乐官网官方网站破解百家乐官网技巧 | 网上有百家乐官网玩吗| 百家乐官网2号技术打法| 明珠百家乐的玩法技巧和规则| 百家乐巴厘岛娱乐城| 百家乐算号软件| 真人百家乐官网输钱惨了|